97 research outputs found

    Rounding Methods for Discrete Linear Classification (Extended Version)

    Get PDF
    Learning discrete linear classifiers is known as a difficult challenge. In this paper, this learning task is cast as combinatorial optimization problem: given a training sample formed by positive and negative feature vectors in the Euclidean space, the goal is to find a discrete linear function that minimizes the cumulative hinge loss of the sample. Since this problem is NP-hard, we examine two simple rounding algorithms that discretize the fractional solution of the problem. Generalization bounds are derived for several classes of binary-weighted linear functions, by analyzing the Rademacher complexity of these classes and by establishing approximation bounds for our rounding algorithms. Our methods are evaluated on both synthetic and real-world data

    Deep Learning for Metagenomic Data: using 2D Embeddings and Convolutional Neural Networks

    Full text link
    Deep learning (DL) techniques have had unprecedented success when applied to images, waveforms, and texts to cite a few. In general, when the sample size (N) is much greater than the number of features (d), DL outperforms previous machine learning (ML) techniques, often through the use of convolution neural networks (CNNs). However, in many bioinformatics ML tasks, we encounter the opposite situation where d is greater than N. In these situations, applying DL techniques (such as feed-forward networks) would lead to severe overfitting. Thus, sparse ML techniques (such as LASSO e.g.) usually yield the best results on these tasks. In this paper, we show how to apply CNNs on data which do not have originally an image structure (in particular on metagenomic data). Our first contribution is to show how to map metagenomic data in a meaningful way to 1D or 2D images. Based on this representation, we then apply a CNN, with the aim of predicting various diseases. The proposed approach is applied on six different datasets including in total over 1000 samples from various diseases. This approach could be a promising one for prediction tasks in the bioinformatics field.Comment: Accepted at NIPS 2017 Workshop on Machine Learning for Health (https://ml4health.github.io/2017/); In Proceedings of the NIPS ML4H 2017 Workshop in Long Beach, CA, USA

    The Power of Swap Deals in Distributed Resource Allocation

    No full text
    International audienceIn the simple resource allocation setting consisting in assigning exactly one resource per agent, the top trading cycle procedure stands out as being the undisputed method of choice. It remains however a centralized procedure which may not well suited in the context of multiagent systems, where distributed coordination may be problematic. In this paper, we investigate the power of dynamics based on rational bilateral deals (swaps) in such settings. While they may induce a high efficiency loss, we provide several new elements that temper this fact: (i) we identify a natural domain where convergence to a Pareto-optimal allocation can be guaranteed, (ii) we show that the worst-case loss of welfare is as good as it can be under the assumption of individual rationality, (iii) we provide a number of experimental results, showing that such dynamics often provide good outcomes, especially in light of their simplicity, and (iv) we prove the NP-hardness of deciding whether an allocation maximizing utilitarian or egalitarian welfare is reachable

    On Lipschitz Regularization of Convolutional Layers using Toeplitz Matrix Theory

    Full text link
    This paper tackles the problem of Lipschitz regularization of Convolutional Neural Networks. Lipschitz regularity is now established as a key property of modern deep learning with implications in training stability, generalization, robustness against adversarial examples, etc. However, computing the exact value of the Lipschitz constant of a neural network is known to be NP-hard. Recent attempts from the literature introduce upper bounds to approximate this constant that are either efficient but loose or accurate but computationally expensive. In this work, by leveraging the theory of Toeplitz matrices, we introduce a new upper bound for convolutional layers that is both tight and easy to compute. Based on this result we devise an algorithm to train Lipschitz regularized Convolutional Neural Networks

    Online Trajectory Planning Through Combined Trajectory Optimization and Function Approximation: Application to the Exoskeleton Atalante

    Full text link
    Autonomous robots require online trajectory planning capability to operate in the real world. Efficient offline trajectory planning methods already exist, but are computationally demanding, preventing their use online. In this paper, we present a novel algorithm called Guided Trajectory Learning that learns a function approximation of solutions computed through trajectory optimization while ensuring accurate and reliable predictions. This function approximation is then used online to generate trajectories. This algorithm is designed to be easy to implement, and practical since it does not require massive computing power. It is readily applicable to any robotics systems and effortless to set up on real hardware since robust control strategies are usually already available. We demonstrate the computational performance of our algorithm on flat-foot walking with the self-balanced exoskeleton Atalante

    Randomization for adversarial robustness: the Good, the Bad and the Ugly

    Full text link
    Deep neural networks are known to be vulnerable to adversarial attacks: A small perturbation that is imperceptible to a human can easily make a well-trained deep neural network misclassify. To defend against adversarial attacks, randomized classifiers have been proposed as a robust alternative to deterministic ones. In this work we show that in the binary classification setting, for any randomized classifier, there is always a deterministic classifier with better adversarial risk. In other words, randomization is not necessary for robustness. In many common randomization schemes, the deterministic classifiers with better risk are explicitly described: For example, we show that ensembles of classifiers are more robust than mixtures of classifiers, and randomized smoothing is more robust than input noise injection. Finally, experiments confirm our theoretical results with the two families of randomized classifiers we analyze.Comment: 8 pages + bibliography and appendix, 3 figures. Submitted to ICML 202

    Expressive Power of Weighted Propositional Formulas for Cardinal Preference Modelling

    Get PDF
    As proposed in various places, a set of propositional formulas, each associated with a numerical weight, can be used to model the preferences of an agent in combinatorial domains. If the range of possible choices can be represented by the set of possible assignments of propositional symbols to truth values, then the utility of an assignment is given by the sum of the weights of the formulas it satisfies. Our aim in this paper is twofold: (1) to establish correspondences between certain types of weighted formulas and well-known classes of utility functions (such as monotonic, concave or k-additive functions); and (2) to obtain results on the comparative succinctness of different types of weighted formulas for representing the same class of utility functions

    Precision-Recall Divergence Optimization for Generative Modeling with GANs and Normalizing Flows

    Full text link
    Achieving a balance between image quality (precision) and diversity (recall) is a significant challenge in the domain of generative models. Current state-of-the-art models primarily rely on optimizing heuristics, such as the Fr\'echet Inception Distance. While recent developments have introduced principled methods for evaluating precision and recall, they have yet to be successfully integrated into the training of generative models. Our main contribution is a novel training method for generative models, such as Generative Adversarial Networks and Normalizing Flows, which explicitly optimizes a user-defined trade-off between precision and recall. More precisely, we show that achieving a specified precision-recall trade-off corresponds to minimizing a unique ff-divergence from a family we call the \mbox{\em PR-divergences}. Conversely, any ff-divergence can be written as a linear combination of PR-divergences and corresponds to a weighted precision-recall trade-off. Through comprehensive evaluations, we show that our approach improves the performance of existing state-of-the-art models like BigGAN in terms of either precision or recall when tested on datasets such as ImageNet

    Reactive Stepping for Humanoid Robots using Reinforcement Learning: Application to Standing Push Recovery on the Exoskeleton Atalante

    Full text link
    State-of-the-art reinforcement learning is now able to learn versatile locomotion, balancing and push-recovery capabilities for bipedal robots in simulation. Yet, the reality gap has mostly been overlooked and the simulated results hardly transfer to real hardware. Either it is unsuccessful in practice because the physics is over-simplified and hardware limitations are ignored, or regularity is not guaranteed, and unexpected hazardous motions can occur. This paper presents a reinforcement learning framework capable of learning robust standing push recovery for bipedal robots that smoothly transfer to reality, providing only instantaneous proprioceptive observations. By combining original termination conditions and policy smoothness conditioning, we achieve stable learning, sim-to-real transfer and safety using a policy without memory nor explicit history. Reward engineering is then used to give insights into how to keep balance. We demonstrate its performance in reality on the lower-limb medical exoskeleton Atalante

    New Candidates Welcome! Possible Winners with respect to the Addition of New Candidates

    Full text link
    In voting contexts, some new candidates may show up in the course of the process. In this case, we may want to determine which of the initial candidates are possible winners, given that a fixed number kk of new candidates will be added. We give a computational study of this problem, focusing on scoring rules, and we provide a formal comparison with related problems such as control via adding candidates or cloning.Comment: 34 page
    corecore